19,871 research outputs found

    Stochastic dynamics of a Josephson junction threshold detector

    Full text link
    We generalize the stochastic path integral formalism by considering Hamiltonian dynamics in the presence of general Markovian noise. Kramers' solution of the activation rate for escape over a barrier is generalized for non-Gaussian driving noise in both the overdamped and underdamped limit. We apply our general results to a Josephson junction detector measuring the electron counting statistics of a mesoscopic conductor. Activation rate dependence on the third current cumulant includes an additional term originating from the back-action of the measurement circuit.Comment: 5 pages, 2 figures, discussion of experiment added, typos correcte

    Stochastic path integral formalism for continuous quantum measurement

    Full text link
    We generalize and extend the stochastic path integral formalism and action principle for continuous quantum measurement introduced in [A. Chantasri, J. Dressel and A. N. Jordan, Phys. Rev. A {\bf 88}, 042110 (2013)], where the optimal dynamics, such as the most-likely paths, are obtained by extremizing the action of the path integral. In this work, we apply exact functional methods as well as develop a perturbative approach to investigate the statistical behaviour of continuous quantum measurement, with examples given for the qubit case. For qubit measurement with zero qubit Hamiltonian, we find analytic solutions for average trajectories and their variances while conditioning on fixed initial and final states. For qubit measurement with unitary evolution, we use the perturbation method to compute expectation values, variances, and multi-time correlation functions of qubit trajectories in the short-time regime. Moreover, we consider continuous qubit measurement with feedback control, using the action principle to investigate the global dynamics of its most-likely paths, and finding that in an ideal case, qubit state stabilization at any desired pure state is possible with linear feedback. We also illustrate the power of the functional method by computing correlation functions for the qubit trajectories with a feedback loop to stabilize the qubit Rabi frequency.Comment: 24 pages, 4 figures and 1 tabl

    Entanglement Energetics at Zero Temperature

    Full text link
    We show how many-body ground state entanglement information may be extracted from sub-system energy measurements at zero temperature. Generically, the larger the measured energy fluctuations are, the larger the entanglement is. Examples are given with the two-state system and the harmonic oscillator. Comparisons made with recent qubit experiments show this type of measurement provides another method to quantify entanglement with the environment.Comment: 4 pages, 2 figure

    Sufficient conditions for uniqueness of the weak value

    Get PDF
    We review and clarify the sufficient conditions for uniquely defining the generalized weak value as the weak limit of a conditioned average using the contextual values formalism introduced in Dressel J, Agarwal S and Jordan A N 2010 Phys. Rev. Lett. 104, 240401. We also respond to criticism of our work in [arXiv:1105.4188v1] concerning a proposed counter-example to the uniqueness of the definition of the generalized weak value. The counter-example does not satisfy our prescription in the case of an underspecified measurement context. We show that when the contextual values formalism is properly applied to this example, a natural interpretation of the measurement emerges and the unique definition in the weak limit holds. We also prove a theorem regarding the uniqueness of the definition under our sufficient conditions for the general case. Finally, a second proposed counter-example in [arXiv:1105.4188v6] is shown not to satisfy the sufficiency conditions for the provided theorem.Comment: 17 pages, final published respons

    Preferential duplication graphs

    Get PDF
    We consider a preferential duplication model for growing random graphs, extending previous models of duplication graphs by selecting the vertex to be duplicated with probability proportional to its degree. We show that a special case of this model can be analysed using the same stochastic approximation as for vertex-reinforced random walks, and show that 'trapping' behaviour can occur, such that the descendants of a particular group of initial vertices come to dominate the graph
    • …
    corecore